Dehumidification Behavior of Heat Exchanger Type Adsorber for Desiccant Humidity Control System

Results & Discussion

◆ Adsorption rate

 \checkmark Cooling air velocity $\uparrow \Rightarrow$ Adsorption rate \uparrow e.g. $u_{CA}=0$ m/s: $q/q_e=0.48$ at 360 s $\Leftrightarrow u_{CA}=3$ m/s: $q/q_e=0.86$ at 360 s

Heat transfer between adsorbent and cooling air \uparrow

Cooling of the adsorber was effective to promote adsorption rate.

- ♦ Outlet absolute humidity
 - ✓ Cooling air velocity $\uparrow \Rightarrow$ Lowest absolute humidity \downarrow

e.g. $u_{CA}=0$ m/s: $AH_{PA,out}=13$ g/kg-DA $\Leftrightarrow u_{CA}=3$ m/s: $AH_{PA,out}=7.5$ g/kg-DA

Hypothesis:

For comfortable indoor air quality, dehumidified air at 25 °C and RH=50 % would be supplied in a room.

30 40 50 60 70 8	() 20	40	60	80	100
Regeneration temperature, $T_{\rm HA}$ [°C		Rela	ative hur	nidity, <i>l</i>	RH [%]	
<i>Fig.</i> Effect of regeneration temperature on amount of dehumidified water	ber with ALPO zeolit nidified water even at D zeolite is effective f	e kept regen for lov	a high eratio v-temp	n amou n tem). rege	int of p. of enera	60 °C. tion.

adsorbed

Amount

0.1

0.05

0

Unique **S-shape**

water adsorption

isotherm

...=30 °C, upA=1 m/s

H_{PA, in}=16 g_{-H2O}kg_{-DA}

T_{CA,in}=30 °C, u_{CA}=1 m/s

Amount of dehumidified

40

30

20

10

0

- = Lowest absolute humidity have to reach 10 g/kg-DA.
- \Rightarrow Air cooling over u_{CA} =1 m/s is required for practical use.

Cross-flow heat exchanger type adsorber with ALPO zeolite has a potential to supply dehumidified air at a lower AH with high utilization ratio of adsorbent.

Conclusion

Air cooling was effective to enhance water adsorption rate (=dehumidification rate) by removing both sensible heat of adsorber and heat of adsorption.

 $\Delta q(T_{\mu \Lambda} = 70 \circ C)$

- Adsorber with ALPO zeolite kept a high amount of dehumidified water even at regeneration temp. of 60 °C.
- As increasing cooling air velocities, an initial adsorption rate increased and the lowest absolute humidity decreased during dehumidification process.
- Dehumidified air at absolute humidity of 10 g/kg-DA, which is a target of process air for supplying into the room, could be obtained by flowing cooling air at its velocity over 1 m/s.

Contact

名古屋大学 大学院工学研究科 化学システム工学専攻 先進化学工学システム講座 化学エネルギーシステム工学

窪田 光 宏(KUBOTA Mitsuhiro)

E-mail:kubota.mitsuhiro@material.nagoya-u.ac.jp

※)本Posterは作成時の実験データの取得状況により、論文等で最終的に発表したDataと異なる可能性があることをご了承ください。