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Introduction

® Humidity can be controlled efficiently by using thermal energy below 373 K.
® Sensible and latent cooling loads can be controlled independently.
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© Improvement of utilization ratio of adsorbent during dehumidification process
© Reduction of temperature rise of supply air
Both and is actively by flowing
O Simpler system than that with water coolant
A Batch system
are needed to produce dehumidified air continuously.

In this study

A lab-scale experimental set-up using cross-flow heat exchanger coated with ALPO zeolite was made.
Dehumidification experiment was conducted at various cooling air velocities and regeneration temp.
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Dehumidification Behavior of Heat Exchanger Type Adsorber
for Desiccant Humidity Control System
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Fig. Schematic diagram of cross-flow heat exchanger type adsorber Fig. Water adsorption isotherm on ALPO zeolite
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Table Experimental conditions

Dehumidification | Regeneration
PA CA HA
Temperature, T [°C] 30 30 45-70
Air velocity, u [m/s] 1.0 0,1.0-3.0 1
Humidity, AH [g/kg-DA] 16 16 16
(Relative humidity) 60 60 12.8

PA: Process air, CA: Cooling air, HA: Heating air
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Results & Discussion

Dehumidification behavior of heat exchanger type adsorber
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Effect of cooling air velocity on dehumidification performance ——
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Fig. Time changes in adsorption ratio and absolute humidity at various cooling air velocities
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m: mass flow rate [kg-DA/s], 6:time [s] /,— ~
AH: absolute humidity [g-H,0/kg-DA] [ & Adsorption rate
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r Conclusion ~
@ Air cooling was effective to enhance water adsorption rate (=dehumidification rate) by removing both sensible heat of adsorber and heat of adsorption.
€ Adsorber with ALPO zeolite kept a high amount of dehumidified water even at regeneration temp. of 60 °C.
@ As increasing cooling air velocities, an initial adsorption rate increased and the lowest absolute humidity decreased during dehumidification process.
@ Dehumidified air at absolute humidity of 10 g/kg-DA, which is a target of process air for supplying into the room, could be obtained by flowing cooling air at its velocity over 1 m/s.
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