Activation of carbonaceous materials by combined KOH chemical treatment and microwave irradiation

Results & Discussion

Owing to carbonation and activation of mixture, MW absorptivity of the mixture changed significantly, which brought about a rapid temperature increase.

Water vapor adsorption of ACs prepared

Fig. N2 adsorption isotherm of ACs by microwave heating Fig. Pore size distribution of ACs prepared with microwave and with electric furnace heating

Tab	la Doro	structure and	offoctivo	water adsor	ntivity	of ACc .	aronarad
100	le roie	su ucture anu	enecuve	water ausor	puvity	JI ACS	Jiepaieu

a) Microwave heating							b) Electric furnace heating										
Sample	R	Р	S_{BET}	V_{Total}	V _{Meso}	$V_{\rm Meso}/V_{\rm Total}$	$\Delta q_{ m AHP}$	$\Delta q_{\rm DHC}$	Sample	r	Т	$S_{\rm BET}$	$V_{\rm Total}$	$V_{\rm Meso}$	$V_{\rm Meso}/V_{\rm Total}$	Δq_{AHP}	$\Delta q_{\rm DHC}$
	[-]	[kW]	[m ² /kg]	[m ³ /kg]	[m ³ /kg]	[%]	[kg/kg]	[kg/kg]	Sample	[K/min]	[K]	[m ² /kg]	[m ³ /kg]	[m ³ /kg]	[%]	[kg/kg]	[kg/kg]
			$\times 10^3$	×10 ⁻³	×10 ⁻³							$\times 10^3$	$\times 10^{-3}$	$\times 10^{-3}$			
MW-4-0.26	4	0.26	1129	0.656	0.117	17.8	0.058	0.457	EF-4-873-2	2	873	1892	1.083	0.257	23.7	0.055	0.691
MW-4-0.39	4	0.39	2208	1.559	0.622	39.9	0.085	0.396	EF-4-973-2	2	973	2118	1.184	0.268	22.6	0.017	0.582
MW-4-0.52	4	0.52	1723	1.114	0.351	31.5	0.097	0.384	EF-4-1073-2	2	1073	2279	1.274	0.315	24.7	0.008	0.265
MW-2-0.39	2	0.39	750	0.459	0.084	18.4	0.119	0.325	EF-4-1073-30	30	1073	2599	1.465	0.511	34.9	0.006	0.049
MW-6-0.39	6	0.39	1362	0.807	0.194	24.0	0.102	0.366									

Microwave heating

MW-4-0.39 : Maximum $S_{\text{BET}} \& V_{\text{Total}}$ of **2,208** × 10³ m²/kg & **1**,559 × 10⁻³ m³/kg. MW-4-0.39 & MW-4-0.52 : Mesopores accounted for over **30** % of total pores.

Rapid heating promoted development of mesopores

Electric furnace heating Heating rate of 2 K/min : Microporosity.

Heating rate of 30 K/min : Mesopore ratio higher by 10 % than AC prepared at r=2 K/min.

- Applicability of AC by microwave heating to AHP & DHC

Higher ratio of mesopore than conventional ACs at r=2 K/min.

AHP : Δq_{AHP} -MW_AC $\ll \Delta q_{AHP}$ -Silica gel = 0.158 g_{H2O}/g_{silica gel}

Fig. Water vapor adsorption isotherm of activated carbon

Microwave heating: Type III (BDDT classification)

Amount of adsorbed water gradually and monotonically increased as relative pressure

Electric furnace heating: Type IV

Adsorption isotherm had almost no adsorption up to around $p/p_s=0.4$. A steep increase in uptake was observed at higher relative pressure. (Most typical shape of water adsorption for AC).

Conclusion

- Both phenolic resin/KOH mixture and potassium hydroxide were rapidly heated over 700 K within 240 s, activated carbon was produced from the mixture in a short time.
- For AC prepared at KOH/ phenolic resin weight ratio, R, of 4 and at MW power, P, of 0.39 kW, S_{BET} and V_{Total} reached maximum values of 2,208 × 10³ m²/kg and 1.559 × 10⁻³ m³/kg, respectively.
- Activated carbon prepared under microwave heating at P=0.39 and 0.52 kW had high ratio of mesopore to total pore compared to ACs prepared with slow electric furnace heating.
- Activated carbon prepared prepared at R=4 and at P=0.26 kW had 1.5 times higher effective water adsorptivity for desiccant humidity conditioner than a commercial silica gel.

Contact

名古屋大学 大学院工学研究科 化学システム工学専攻 先進化学工学システム講座 化学エネルギーシステム工学

窪田 光宏(KUBOTA Mitsuhiro)

E-mail:kubota.mitsuhiro@material.nagoya-u.ac.jp